Method of Test for DETERMINING TOTAL MOISTURE AND FREE MOISTURE IN AGGREGATE (COARSE AND FINE) DOTD Designation: TR-106-11 # Method A - Rapid Drying ## I. Scope - A. This procedure is designed to determine the total moisture and free moisture contents of coarse and fine aggregates for Portland cement concrete by drying the material on a hot plate. - B. Reference Documents: - DOTD TR 108 Splitting and Quartering Samples - 2. AASHTO T 84 Specific Gravity and Absorption of Fine Aggregate - 3. AASHTO T 85 Specific Gravity and Absorption of Coarse Aggregate. # II. Apparatus #### A. Scales - 20 lb. or greater capacity sensitive to 0.01 lb. - 2. 10 kg capacity sensitive to 1 g. - 3. 1 kg or greater capacity sensitive to 0.1 g. - B. Electric or gas hot plate an open flame hot plate shall be equipped with a suitable shield to disperse heat evenly and to prevent direct contact of the flame with the drying pan. - C. Pans sufficient to hold sample without spilling and large enough to spread the material for rapid drying. - D. Brush - E. Stirrer spoon or spatula - F. Thermal gloves, apron, tools, eye protection for handling hot materials. - G. Portland Cement Concrete Plant Report DOTD Form No. 03-22-4040(Figure 2) ## **III. Health Precautions** Proper equipment and precautions are to be used whenever hot materials or equipment must be handled. Use container holders for gloves while handling hot containers. Wear eye protection while stirring and weighing the heated material due to possible shattering of particles. ## IV. Sample The entire sample may be used to determine moisture content. If a representative portion is used, obtain the representative portion in accordance with DOTD TR 108. The following minimum sizes will apply: - A. Fine Aggregate -500 g - B. Coarse Aggregate -10 lb. - C. Lightweight Aggregate -2000 g ## V. Procedure - A. Place wet material in a drying pan of known tare weight. Weigh and record the weight of the wet material and pan as B to the nearest 0.01 lb, 1 g, or 0.1 g depending on the sensitivity of the scale. - B. Place pan containing wet material on the hot plate and heat, stirring constantly to accelerate drying and to avoid localized overheating. - C. Do not lose any particles from spillage or adherence to the stirrer. Brush material adhering to stirrer into pan. Control heat to avoid loss of material from exploding particles. Dry to a constant weight. **NOTE A-1:** Constant weight for drying purposes is defined as less than 0.1% weight loss between successive weighings no less than 5 minutes apart. D. Cool the pan and dried material until the pan can be handled without DOTD TR 106-11 Rev. 12/11 Page 2 of 5 Method A gloves. Weigh the pan with the material and record as C to the nearest 0.01 lb, 1 g, or 0.1 g, depending on the sensitivity of the scale. #### V. Calculations - A. Subtract the tare weight of pan from the weight of dried material and pan to determine the weight of dried material and pan to determine the weight of the dried material and record as E to the nearest 0.01 lb, 1 g, or 0.1 g, depending on the sensitivity of the scale. - B. Determine the weight of water in the material by subtracting the weight of the dried material and pan from the weight of the wet material and pan and record as D to the nearest 0.01 lb, 1 g, or 0.1 g, depending on the sensitivity of the scale. - C. Calculate the total moisture content, %, (F) to the nearest 0.1 % using the following formula: $$F = \frac{D \times 100}{E}$$ where, D = wt. of water, lb or g E = dry wt. of material, lb or g 100= constant example, D = 25.0 g E = 510.0 g $$F = \frac{25.0 \times 100}{510}$$ $$= \frac{2500}{510.0}$$ $$= 4.901$$ $$F = 4.9\%$$ D. Calculate the free moisture content, %,(H) to the nearest 0.1% using the following formula: $$H = F - G$$ where, F = total moisture content, % G = absorption factor, % (determined by AASHTO T 84 or 85) example: $$F = 4.9$$ $G = 0.3$ $H = 4.9 - 0.3$ $H = 4.6\%$ ## VI. Report - A. Report the total moisture content to the nearest 0.1%. - B. When the free moisture content of sample is calculated, report the free moisture content to the nearest 0.1%. ## VII. Normal Test Reporting Time Normal test reporting time is one hour. DOTD Designation: TR 106-11 # Method B - Oven Drying ## I. Scope - A. This procedure is designed to determine the total moisture and free moisture contents of coarse and fine aggregates for Portland cement concrete, Blended Calcium sulfate (BCS), and Reclaimed Asphalt Concrete Pavement (RAP) by drying the material in an oven. - B. Reference Documents: - DOTD TR 108 Splitting and Quartering Samples - AASHTO T 84 Specific Gravity and Absorption of Fine Aggregate - 3. AASHTO T 85 Specific Gravity and Absorption of Coarse Aggregate # II. Apparatus #### A. Scales - 1. 20 lb or greater capacity sensitive to 0.01 lb. - 2. 10 kg capacity sensitivity to 1 g. - 3. 1 kg or greater capacity sensitive to 0.1 g. - B. Oven approved thermostatically controlled, ventilated oven, capable of maintaining a temperature of 230±9°F (110±5°C), 131±9°F (55±5°C), and 100±9°F (38±5°C). - C. Pans sufficient to hold sample without spilling and large enough to spread the material for rapid drying. - D. Thermal gloves, apron, tools, eye protection for handling hot materials. - E. Portland Cement Concrete Plant Report DOTD Form No. 03-22-4040 (Figure 2). ## **III. Health Precautions** Proper equipment and precautions are to be used whenever hot materials or equipment must be handled. Use container holders or gloves while handling hot containers. Wear eye protection while stirring and weighing the heated material due to possible shattering of particles. ## IV. Sample The entire sample may be used to determine moisture content. If a representative portion is used, obtain the representative portion in accordance with DOTD TR 108. The following minimum sizes will apply. - A. Fine Aggeregate –500 g - B. Coarse Aggregate -10 lb - C. Lightweight Aggregate 2000 g ## V. Procedure - A. Place wet material in a drying pan of know tare weight. Weigh and record the weight of the wet material and pan as B to the nearest 0.01 lb, 1 g, or 0.1 g, depending on the sensitivity of the scale. - B. Place pan containing wet material in the oven at a temperature as indicated in Figure 1 and dry to a constant weight. **Note B-1:** Constant weight for drying purposes is defined as less than 0.1% weight loss between successive weighings no less than 15 minutes apart. | MATERIAL | TEMPERATURE | |---|----------------------| | Reclaimed Asphaltic
Concrete Pavement
(RAP) | 100±9°F
(38±5°C) | | Blended Calcium
Sulfate (BCS) | 131±9°F
(55±5°C) | | Other Aggregates | 230±9°F
(110±5°C) | Figure 1 C. Cool the pan and dried material until the pan can be handled without gloves. Weigh the pan with the material and record as C to the nearest 0.01 lb, 1 g, of 0.1 g, depending on the sensitivity of the scale. DOTD TR 106-11 Rev. 12/11 Page 4 of 5 Method B #### VI. Calculations - A. Subtract the tare weight of pan from the weight of dried material and pan to determine the weight of the dried material and record as E to the nearest 0.01 lb, 1 g, or 0.1 g, depending on the sensitivity of the scale. - B. Determine the weight of water in the material by subtracting the weight of the dried material and pan from the weight of the wet material and pan and record as D to the nearest 0.01 lb, 1 g, or 0.1 g, depending on the sensitivity of the scale. - C. Calculate the total moisture content, %,(F) to the nearest 0.1% using the following formula: $$F = \frac{D \times 100}{E}$$ where, D = wt. of water, lb or g E = dry wt. of material, lb or g 100 = constant example, D = 0.23 lb E = 10.09 lb $$F = \frac{0.23 \times 100}{10.09}$$ $$= \frac{23}{10.09}$$ $$F = 2.279$$ F = 2.3% D. Calculate the free moisture content, %,(H) to the nearest 0.1% using the following formula: $$H = F - G$$ where: or F = total moisture content, % G = absorption factor, % (determined b AASHTO T 84 85) example: $$F = 2.3$$ $G = 0.8$ $H = 2.3 - 0.8$ $H = 1.5\%$ ## IX. Report - A. Report the total moisture content to the nearest 0.1%. - B. When the free moisture content of sample is calculated, report the free moisture content to the nearest 0.1% ## X. Normal Test Reporting Time Normal test reporting time is 24 hours. | LOUISIANA DEPARTMENT O PORTLAND CEMEN | | | | DOTD 03-22-40-
3/85 | 40 | |--|---|----------------|--|------------------------|------------| | Project No. 842-61-0097 Da | ete 1-8 | -93 | Lot No/ | Mix Design No/_ | _ | | Plant ABC Ready Mix | ocation Ba | on Roug | 6 | | | | Concrete (Class/Type) Cloop A Min Cement Factor | 6.0 | Bags Ma | x Water-Cement R | atio 6.0 G | Sal
Bag | | Total Cubic Yards Today | Scales Balanced: | Time | AM | AM A | MA | | | ortions From N | | PM | PM | M | | | | | | | | | Cement lb Fly Ash | | | | | | | Coarse Aggregate (SSD) lb | | | | Entrainment | oz | | Moisture and Batch Wei | ght Computati | ons for One Cu | bic Yard | | | | Aggregate Tests | | TEST 1 TEST 2 | | | | | Time of Test | | FINE | COARSE | FINE COARSE | - | | A Tare weight, gm or lb | | 192.5 | 1.95 | | - | | B Wet weight (A + sample), gm or lb | | 727.5 | 12.27 | | \dashv | | C Dry weight (A + sample), gm or lb | | 702.5 | 12.04 | | - | | D Weight of water (B-C), gm or lb | | 25.0 | 0.23 | | - | | E Dry weight of sample (C-A), gm or ib | | 510.0 | 10.09 | | \neg | | F Percent total moisture (D/E), % | | 4.9 | 2.3 | | - | | G Absorption factor % | *************************************** | 0.3 | 0.8 | | _ | | H Percent free moisture (F-G), % | | 4.6 | 1.5 | | - | | Pounds of aggregate/cu yd (SSD) from mix design | | 7.0 | 7.5 | | - | | J Corrected weight (1 + (H/100)) I, lb | | - | | | - | | K Free water (J-I), Ib | | | | | - | | The state of s | | - | | | - | | L Free water (K/8,34), gal | | | <u> </u> | | | | Allowable Water C | Calculations for | One Cubic Ya | ard - | | | | M Total admixture (ounces from mix design/128), gal | | | | | | | N Total free water (L for fine and coarse agg. + M), gal | | - David | | | | | O Maximum allowable water (from mix design), gal | | | | | | | P Maximum allowable water to be added (O-N), gal | | | | | | | Q. Minimum allowable water to be added (.75P), gal | | | | | | | Total Bar | tch Weight Cal | culations | | | | | R Batch size, cu yd | | | | | | | S Cement (R x mix design weight), lb | | | | | | | T Fly Ash (R x mix design weight), lb | | | | | | | U Fine aggregate (R x J), lb | | | | | | | V Coarse aggregate (R x J), lb | | | | | | | W Maximum water to be added (R x P), gal | | | | | | | X Minimum water to be added (R x Q), gal | | | | | | | Y Water reducing admixture (R x mix design weight), oz | | | | | | | Z Air entraining admixture (R x mix design weight), oz | | | | | | | Batch Wat | ter Adjustment | s For Ice | | | | | AA Pounds of ice added per cu yd | | | T | | _ | | BB Gallons of ice (AA x R/8.34 = gal per batch) | | | | | _ | | CC Adjusted maximum water to be added (W-BB), gal | | | | | 700 | | DD Adjusted minimum water to be added (X-BB), gal | | | | | | | harman American | | | | | | | Remarks | | | | | - 1 | | E.K. Hunt | | 010 | Mitch | 10 | | | 10.11. 140100 | | 6. | accide | | | | Concrete Technician | | /Departme | nt's Certified Ir | spector | | Figure 2 Portland Cement Concrete Plant Report (Methods A and B)